
An Experimental Evaluation of
Ground Decision Procedures?

Leonardo de Moura and Harald Rueß

SRI International
Computer Science Laboratory

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

{demoura, ruess}@csl.sri.com
phone+1 650 859-6136, fax +1 650 859-2844

Abstract. There is a large variety of algorithms for ground decision procedures,
but their differences, in particular in terms of experimental performance, are not
well studied. We compare the behavior of ground decision procedures by com-
paring the performance of a variety of technologies on benchmark suites with
differing characteristics. Based on these experimental results, we discuss relative
strengths and shortcomings of different systems.

1 Introduction

Decision procedures are an enabling technology for a growing number of applications
of automated deduction in hardware and software verification, planning, bounded model
checking, and other search problems. In solving these problems, decision procedures
are used to decide the validity of propositional constraints such as

z= f (x− y) ∧ x = z+ y→ −y = −(x− f (f (z))) .

This formula is in the combination of linear arithmetic and an uninterpreted function
symbol f . Since all variables are considered to be universally quantified, they can be
treated as (Skolem) constants, and hence we say that the formula isground.

Solving propositional formulas with thousands of variables and hundreds of thou-
sands of literals, as required by many applications, is a challenging problem. Over the
last couple of years, many different algorithms, heuristics, and tools have been devel-
oped in addressing this challenge. Most of these approaches either use extensions of
binary decision diagrams [1], or an equisatisfiable reduction of propositional constraint
formulas to propositional logic, which is solved using a Davis-Putnam [2] search pro-
cedure. With the notable exception of Simplify [3] there is a lack of systematic bench-
marking for most implemented systems. Moreover, their differences, especially in terms
of experimental performance, are not well studied.

? Funded by SRI International, by NSF Grants CCR-0082560, EIA-0224465, and CCR-
0326540, DARPA/AFRL-WPAFB Contract F33615-01-C-1908, and NASA Contract
B0906005.

2

Ultimately, it is our goal to develop comprehensive maps of the behavior of ground
decision procedures by comparing the performance of a variety of technologies on
benchmark suites with differing characteristics, and the study in this paper is an es-
sential first step towards this goal of comprehensive benchmarking. We have been col-
lecting a number of existing benchmarks for ground decision procedures and applied
them to CVC and CVC Lite [4], ICS [5], UCLID [6], MathSAT [7], Simplify [3], and
SVC [8] systems. This required developing translators from the various benchmark for-
mats to the input languages of the systems under consideration. For the diversity of the
algorithms underlying ground decision procedures, we only measure runtimes. We an-
alyze the computational characteristics of each system on each of the benchmarks, and
expose specific strengths and weaknesses of the systems under consideration.

Since such an endeavor should ultimately develop into a cooperative ongoing ac-
tivity across the field, our main emphasis in conducting these experiments is not only
on reproducibility but also on reusability and extensibility of our experimental setup.
In particular, all benchmarks and all translators we developed for converting input for-
mats, and all experimental results are publicly available athttp://www.csl.sri.
com/users/demoura/gdp-benchmarks.html.

This paper is structured as follows. In Section2 we include a brief overview of the
landscape of different methods for ground decision procedures, and in Section3 we
describe the decision procedures, benchmarks, and our experimental setup. Section4
contains our experimental results by pairwise comparing the behavior of decision pro-
cedures on each benchmark set, and in Section5 and6 we summarize some general
observations from these experiments and provide final conclusions.

2 Ground Decision Procedures

We considerground decision procedures(GDP) for deciding propositional satisfiabil-
ity for formulas with literals drawn from a given constraint theoryT . GDPs are usually
obtained as extensions of decision procedures for the satisfiability problem of conjunc-
tions of constraints inT . For example, satisfiability for a conjunction of equations and
disequations over uninterpreted terms (U) is decidable inO(n log(n)) using congru-
ence closure [9]. Conjunctions of constraints in rational linear arithmetic are solvable
in polynomial time, although many algorithms such as Simplex have exponential worst-
case behavior. In the theoryD of difference logic, arithmetic constraints are restricted to
constraints of the formx− y ≤ c with c a constant. AnO(n3) algorithm for the conjunc-
tion of such constraints is obtained by searching, using the Bellman-Ford algorithm, for
negative-weight cycles in the graph with variables as nodes and an edge of weightc
from x to y for each such constraints. For individual theoriesT i with decidable satisfi-
ability problems, the union of allT i ’s is often decided using a Nelson-Oppen [10] or a
Shostak-like [11,12] combination algorithm.

Given a procedure for deciding satisfiability of conjunctions of constraints inT it is
straightforward to decide propositional combinations of constraints inT by transform-
ing the formula into disjunctive normal form, but this is often prohibitively expensive.
Better alternatives are to extend binary decision diagrams to include constraints instead
of variables (e.g. difference decision diagrams), or to reduce the propositional constraint

http://www.csl.sri.com/users/demoura/gdp-benchmarks.html
http://www.csl.sri.com/users/demoura/gdp-benchmarks.html

3

ICS ulimit -s 30000; ics problem-name.ics
UCLID uclid problem-name.ucl sat 0 zchaff
CVC cvc +sat < problem-name.cvc
CVC Lite cvcl +sat fast < problem-name.cvc
SVC svc problem-name.svc
Simplify Simplify problem-name.smp
Math-SAT mathsat_linux problem-name.ms -bj math -heuristic SatzHeur

Table 1.Command line options used to execute GDPs.

problem to a purely propositional problem by encoding the semantics of constraints in
terms of added propositional constraints (see, for example, Theorem 1 in [13]). Algo-
rithms based on this latter approach are characterized by the eagerness or laziness with
which constraints are added.

In eagerapproaches to constructing a GDP from a decision procedure forT , propo-
sitional constraints formulas are transformed into equisatisfiable propositional formu-
las. In this way, Ackermann [14] obtains a GDP for the theoryU by adding all possible
instances of the congruence axiom and renaming uninterpreted subterms with fresh
variables. In the worst case, the number of such axioms is proportional to the square
of the length of the given formula. Other theories such as S-expressions or arrays can
be encoded using the reductions given by Nelson and Oppen [10]. Variations of Acker-
mann’s trick have been used, for example, by Shostak [15] for arithmetic reasoning in
the presence of uninterpreted function symbols, and various reductions of the satisfiabil-
ity problem of Boolean formulas over the theory of equality with uninterpreted function
symbols to propositional SAT problems have recently been described [16], [17], [18].
In a similar vein, an eager reduction to propositional logic works for constraints in dif-
ference logic [19].

In contrast,lazy approaches introduce part of the semantics of constraints on de-
mand [13], [20], [7], [21]. Let φ be the formula whose satisfiability is being checked,
and letL be an injective map from fresh propositional variables to the atomic subfor-
mulas ofφ such thatL−1[φ] is a propositional formula. We can use a propositional
SAT solver to check thatL−1[φ] is satisfiable, but the resulting truth assignment, say
l1∧ . . .∧ ln, might be spurious, that isL[l1∧ . . .∧ ln] might not be ground-satisfiable. If
that is the case, we can repeat the search with the addedlemmaclause (¬l1 ∨ . . . ∨ ¬ln)
and invoke the SAT solver on (¬l1∨. . .∨¬ln)∧L−1[φ]. This ensures that the next satisfy-
ing assignment returned is different from the previous assignment that was found to be
ground-unsatisfiable. In such anoffline integration, a SAT solver and a constraint solver
can be used as black boxes. In contrast, in anonline integration the search for satisfy-
ing assignments of the SAT solver is synchronized with constructing a corresponding
logical context of the theory-specific constraint solver. In this way, inconsistencies de-
tected by the constraint solver may trigger backtracking in the search for satisfying
propositional assignments. An effectiveonline integration can not be obtained with a
black-box decision procedures but requires the constraint solver to process constraints
incrementallyand to bebacktrackablein that not only the current logical context is
maintained but also contexts corresponding to backtracking points in the search for
satisfying assignments. The basic refinement loop in thelazy integration is usually ac-

4

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

nu
m

be
r

of
 v

ar
ia

bl
es

(a) Math-SAT suite

 0

 20

 40

 60

 80

 100

 120

nu
m

be
r

of
 v

ar
ia

bl
es

(b) UCLID suite

 0
 200
 400
 600
 800

 1000
 1200
 1400

nu
m

be
r

of
 v

ar
ia

bl
es

(c) SAL suite

 0

 100

 200

 300

 400

 500

 600

nu
m

be
r

of
 v

ar
ia

bl
es

(d) SEP suite

Fig. 1. Benchmark suites with number of boolean (dark gray) and non-boolean (light
gray) variables in each problem.

celerated by considering negations of minimal inconsistent sets of constraints or “good”
over-approximations thereof. These so-calledexplanationsare either obtained from an
explicitly generated proof object or by tracking dependencies of facts generated during
constraint solver runs.

3 Experimental Setup

We describe the setup of our experiments including the participating systems, the bench-
marks and their main characteristics, and the organization of the experiments itself. This
setup has been chosen before conducting any experiments.

3.1 Systems.

The systems participating in this study implement a wide range of different satisfia-
bility techniques as described in Section2. All these GDPs are freely available and
distributed,1 and in each case we have been using the latest version (as of January 10,
2004). We provide short descriptions in alphabetical order.

The Cooperating Validity Checker(CVC 1.0a,http://verify.stanford.edu/
CVC/) [4] is a GDP for the combination of theories including linear real arithmeticA,
uninterpreted function symbolsU, functional arrays, and inductive datatypes. Proposi-
tional reasoning is obtained by means of a lazy, online integration of the zChaff SAT
solver and a constraint solver based on a Shostak-like [11] combination, and explana-
tions are obtained as axioms of proof trees. We also consider the successor system CVC
Lite (version 1.0.1,http://chicory.stanford.edu/CVCL/), whose architecture is
similar to the one of CVC.

1 http://www.qpq.org/

http://verify.stanford.edu/CVC/
http://verify.stanford.edu/CVC/
http://chicory.stanford.edu/CVCL/
http://www.qpq.org/

5

The Integrated Canonizer and Solver(ICS 2.0,http://ics.csl.sri.com) [5] is a
GDP for the combination of theories including linear real arithmeticA, uninterpreted
function symbolsU, functional arrays, S-expressions, products and coproducts, and
bitvectors. It realizes a lazy, online integration of a non-clausal SAT solver with an
incremental, backtrackable constraint engine based on a Shostak [11] combination. Ex-
planations are generated and maintained using a simple tracking mechanism.

UCLID (version 1.0,http://www-2.cs.cmu.edu/~uclid/) is a GDP for the com-
bination of difference logic and uninterpreted function symbols. It uses an eager trans-
formation to SAT problems, which are solved using zChaff [6]. The use of other theories
such as lambda expressions and arrays is restricted in order to eliminate them in pre-
processing steps.

Math-SAT [7] (http://dit.unitn.it/~rseba/Mathsat.html) is a GDP for linear
arithmetic based on a black-box constraint solver, which is used to detect inconsisten-
cies in constraints corresponding to partial Boolean assignments in an offline manner.
The constraint engine uses a Bellman-Ford algorithm for difference logic constraints
and a Simplex algorithm for more general constraints.

Simplify [3] (http://research.compaq.com/SRC/esc/Simplify.html) is a
GDP for linear arithmeticA, uninterpreted functionsU, and arrays based on the
Nelson-Oppen combination. Simplify uses SAT solving techniques, which do not incor-
porate many efficiency improvements found in modern SAT solvers. However, Simplify
goes beyond the other systems considered here in that it includes heuristic extensions
for quantifier reasoning, but this feature is not tested here.

Stanford Validity Checker(SVC 1.1,http://chicory.stanford.edu/SVC/) [8] de-
cides propositional formulas with uninterpreted function symbolsU, rational linear
arithmeticA, arrays, and bitvectors. The combination of constraints is decided using a
Shostak-style combination extended with binary decision diagrams.

3.2 Benchmark suites

We have included in this study freely distributed benchmark suites for GDPs with con-
straints inA andU and combinations thereof. These problems range from standard
timed automata examples to equivalence checking for microprocessors and the study
of fault-tolerant algorithms. For the time being we do not separate satisfiable and un-
satisfiable instances. Since some of the benchmarks are distributed in clausal and other
in non-clausal form, it is difficult to provide measures on the difficulty of these prob-
lems, but Figure1 contains the number of variables for each benchmark problem. The
dark gray bars represents the number of boolean and the light gray bars the number of
non-boolean variables.

The Math-SAT benchmark suite(http://dit.unitn.it/~rseba/Mathsat.html)
is composed of timed automata verification problems. The problems are distributed
only in clausal normal form and arithmetic is restricted to coefficients in{−1,0,1}. This

http://ics.csl.sri.com
http://www-2.cs.cmu.edu/~uclid/
http://dit.unitn.it/~rseba/Mathsat.html
http://research.compaq.com/SRC/esc/Simplify.html
http://chicory.stanford.edu/SVC/
http://dit.unitn.it/~rseba/Mathsat.html

6

benchmark format also includes extra-logicalsearch hintsfor the Math-SAT system.
This suite comprises 280 problems, 159 of which are in the difference logic fragment.
The size of the ASCII representation of these problems ranges from 4Kb to 26Mb. As
can be seen in Figure1(a)most of the variables are boolean.2

Benchmark suite Sat Unsat Unsolved

Math-Sat 37 224 19
UCLID 0 36 2
SAL 21 167 29
SEP 9 8 0

Table 2.Classification.

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

M
at

h-
SA

T

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(f)

Fig. 2.Runtimes (in seconds) on Math-SAT benchmarks.

The UCLID benchmark suite(http://www-2.cs.cmu.edu/~uclid) is derived from
processor and cache coherence protocol verifications. This suite is distributed in the
SVC input format. In particular, propositional structures are non-clausal and constraints
include uninterpreted functionsU and difference constraintsD. Altogether there are
38 problems, the size of the ASCII representation ranges from 4Kb to 450Kb, and the
majority of the literals are non-boolean (Figure1(b)).

2 We suspect that many boolean variables have been introduced through conversion to CNF.

http://www-2.cs.cmu.edu/~uclid

7

ICS UCLID CVC CVC Lite SVC Simplify Math-SAT
Math-SAT timeout 0 3 0 19 50 91 52
suite aborts 22 21 58 61 39 0 0
UCLID timeout 4 2 0 9 5 24 n/a
suite aborts 4 0 14 9 0 0 n/a
SAL timeout 1 36 1 115 87 99 n/a
suite aborts 29 4 64 7 4 4 n/a
SEP timeout 0 0 0 1 1 0 n/a
suite aborts 0 1 1 1 0 0 n/a

Table 3.Number of timeouts and aborts for each system.

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

M
at

h-
SA

T

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC
SV

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

M
at

h-
SA

T

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

SVC

M
at

h-
SA

T

timeout
aborts

(d)

Fig. 3.Runtimes (in seconds) on the Math-SAT benchmarks (cont.)

The SAL benchmark suite (http://www.csl.sri.com/users/demoura/
gdp-benchmarks.html) is derived from bounded model checking of timed au-
tomata and linear hybrid systems, and from test-case generation for embedded
controllers. The problems are represented in non-clausal form, and constraints are
in full linear arithmetic. This suite contains 217 problems, 110 of which are in the
difference logic fragment, the size of the ASCII representation of these problems
ranges from 1Kb to 300Kb. Most of the boolean variables are used to encode control
flow (Figure1(c)).

The SEP benchmark suite (http://iew3.technion.ac.il/~ofers/
smtlib-local/index.html) is derived from symbolic simulation of hardware
designs, timed automata systems, and scheduling problems. The problems are repre-
sented in non-clausal form, and constraints in difference logic. This suite includes only
17 problems, the size of the ASCII representation of these problems ranges from 1.5Kb
to 450Kb.

http://www.csl.sri.com/users/demoura/gdp-benchmarks.html
http://www.csl.sri.com/users/demoura/gdp-benchmarks.html
http://iew3.technion.ac.il/~ofers/smtlib-local/index.html
http://iew3.technion.ac.il/~ofers/smtlib-local/index.html

8

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

SV
C

timeout
aborts

(f)

Fig. 4.Runtimes (in seconds) on the UCLID benchmarks.

We developed various translators from the input format used in each benchmark
suite to the input format accepted by each GDP described on the previous section, but
Math-SAT. We did not implement a translator to the Math-SAT format because it only
accepts formulas in the CNF format, and a translation to CNF would destroy the struc-
tural information contained in the original formulas. In addition, no specifics are pro-
vided for generating hints for Math-SAT. In developing these translators, we have been
careful to preserve the structural information, and we used all the information available
to use available language features useful for the underlying search mechanisms.3 The
Math-SATsearch hints, however, are ignored in the translation, since this extra-logical
information is meaningless for all the other tools.

3.3 Setup

All experiments were performed on machines with 1GHz Pentium III processor 256Kb
of cache and 512Mb of RAM, running Red Hat Linux 7.3. Although these machines
are now outdated, we were able to set aside 4 machines with identical configuration for
our experiments, thereby avoiding error-prone adjustment of performance numbers. We
considered an instance of a GDP totimeoutif it took more than 3600 secs. Each GDP
was constrained to 450Mb of RAM for the data area, and 40Mb of RAM for the stack
area. We say a GDPabortswhen it runs out of memory or crashes for other reasons.
With these timing and memory constraints running all benchmarks suites requires more
than 30 CPU days.

3 We have also been contemplating a malicious approach for producing worst-possible transla-
tions, but decided against it in such an early stage of benchmarking.

9

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

SV
C

timeout
aborts

(f)

Fig. 5.Runtimes (in seconds) on the SAL benchmarks.

For the diversity of the input languages and the algorithms underlying the GDPs, we
do not include any machine-independent and implementation-independent measures.
Instead, we restrict ourselves to reporting the user time of each process as reported by
Unix. In this way, we are measuring only the systems as implemented, and observa-
tions from these experiments about the underlying algorithms can only be made rather
indirectly.

With the notable exception of CVC Lite, all GDPs under consideration were ob-
tained in binary format from their respective web sites. The CVC Lite binary was ob-
tained using g++ 3.2.1 and configured in optimized mode. Table1 contains the com-
mand line options used to execute each GDP.4

4 Experimental Results

Table2 shows the number of satisfiable and unsatisfiable problems5 for each bench-
mark, and a problem has been classified “Unsolved” when none of the GDPs could
solve it within the time and memory requirements. The scatter graphs in

– Figures2 and 3 include the results of running CVC, ICS, UCLID, MathSAT, and
SVC on the Math-SAT benchmarks,

4 In [20] the depth first search heuristic (option-dfs) is reported to produce the best overall
results for CVC, but we did not use it because this flag causes CVC to produce many incorrect
results.

5 For validity checkers, satisfiable and unsatisfiable should be read as invalid and valid instances
respectively.

10

– Figure4 contains the runtimes of CVC, ICS, SVC, UCLID on the UCLID bench-
marks, and

– Figure5 reports on our results of running CVC, ICS, SVC, and UCLID on the SAL
benchmarks

using the experimental setup as described in Section3. Points above (below) the diago-
nal correspond to examples where the system on the x (y) axis is faster than the other;
points one division above are an order of magnitude faster; a scatter that is shallower
(steeper) than the diagonal indicates the performance of the system on the x (y) axis de-
teriorates relative to the other as problem size increases; points on the right (top) edge
indicate the x (y) axis system timed out or aborted. Multiplicities of dots for timeouts
and aborts are resolved in Table3.

For lack of space, the plots for Simplify and CVC Lite are not included here.
Simplify performed poorly in all benchmarks except SEP, and does not seem to be
competitive with newer GDP implementations. In the case of CVC Lite, its predeces-
sor system CVC demonstrated over-all superior behavior. Also, the SEP suite did not
prove to distinguish well between various systems, as all but one problem could be
solved by all systems in a fraction of a second. All these omitted plots are available at
http://www.csl.sri.com/users/demoura/gdp-benchmarks.html.

Figures2 and3 compare ICS, UCLID, CVC, SVC and Math-SAT on the Math-
SAT suite. The plots comparing UCLID contain only the problems in the difference
logic fragment supported by UCLID. The results show that the overall performance of
ICS is better than those of UCLID, CVC and SVC on most problems of this suite.

With the exception of Math-SAT (which was applied only to its own benchmark
set), every other system failed on at least several problems—mainly due to exhaustion
of the memory limit. Also, the Math-SAT problems proved to be a non-trivial test on
parsers as SVC’s parser crashed on several bigger problems (see Table1). The perfor-
mance of SVC is affected by the size of the problems and the CNF format used (Fig-
ure3(d)) on this suite, since its search heuristics are heavily dependent on the proposi-
tional structure of the formula. On the other hand, the performance of the non-clausal
SAT solver of ICS is not quite as heavily impacted by this special format. In fact, ICS
is the only GDP which solves all problems solved by Math-SAT (Figure2(d)), and it
also solved several problems not solved by Math-SAT, even thoughsearch hintswere
used by Math-SAT. UCLID performs better than CVC and SVC on most of the bigger
problems (Figures2(e)and2(f)).

Figure4 compares ICS, UCLID, CVC, and SVC on the UCLID benchmarks. What
is surprising here is that SVC is competitive with UCLID on UCLID’s own benchmarks
(Figure4(e)). Also, the overall performance of SVC is superior to its predecessor CVC
system (Figure4(f)). ICS does not perform particularly well on this benchmark set in
that it exhausts the given memory limit for many of the larger examples.

Figure 5 compares ICS, UCLID, CVC, and SVC on the SAL benchmarks. ICS
performs better than UCLID on all examples (Figure5(a)), and its overall performance
is better than CVC (Figure5(b)). ICS, UCLID and CVC fail on several problems due
lack of memory. Although the overall performance of CVC seems better than UCLID,
the latter managed to solve several problems where CVC failed (Figure5(d)).

http://www.csl.sri.com/users/demoura/gdp-benchmarks.html

11

5 Observations and Research Questions

As has been mentioned in Section3, the results produced in our experiments measure
mainly implementations of GDPs. Nevertheless, we try to formulate some more gen-
eral observations about algorithmic strengths and weaknesses from these experiments,
which should be helpful in studying and improving GDPs.

Insufficient constraint propagation in lazy integrations.The eager UCLID system usu-
ally outperforms lazy systems such as ICS, CVC, and Math-SAT on problems which
require extensive constraint propagation. This seems to be due to the fact that the un-
derlying lazy integration algorithms only propagate inconsistencies detected by the con-
straint solver, but they do not propagate constraints implied by the current logical con-
text. Suppose a hypothetical problem which contains the atoms{x = y, y = z, x = z},
and during the search the atomsx = y andy = zare assigned to true, then the atomx = z
could be assigned to true by constraint propagation (transitivity), but none of the exist-
ing lazy provers propagates this inference. In contrast, these kinds of propagations are
performed in eager integrations, since the unit-clause rule of Davis-Putnam like SAT
solvers assumes the job of propagating constraints.

Arithmetical constraints in the eager approach.On arithmetic-intensive problems,
UCLID usually performs worse than other GDPs with dedicated arithmetic constraint
solvers. In particular, UCLID’s performance is heavily affected by the size of con-
stants. One of the approaches used by UCLID to reduce difference logic to proposi-
tional logic [19] constructs a graph where each node represents an integer variable, and
a weighted edge represents a difference constraint. Starting from this graph, a clause is
created for each negative cycle. We believe several irrelevant clauses are generated in
this process. We say a clause is irrelevant when it cannot be falsified during the search
due to, for instance, the presence of other constraints. In several examples, UCLID con-
sumed all memory in the translation to propositional logic. For instance, the problem
abz5-900 was easily solved by ICS and Simplify using less than 40Mb, but UCLID
consumed all memory during the translation to propositional logic.

Performance vs. expressiveness.The version of UCLID we have been using is re-
stricted to separation logic, but other systems with support for full arithmetic seem
to be competitive even when problems are restricted to this domain. The goal should be
a fully general system that reliably does the special cases (restricted theories, bounded
instances) at least as well as specialized systems.

Blind search problem in lazy solvers.The problems in the UCLID suite are mainly com-
posed of non-boolean variables (Figure1), so almost all atoms are constraints, and the
lazy constraint solvers introduce a fresh boolean variable for each distinct constraint.
This process produces an underconstrained formula which contains several proposi-
tional variables which occurs only once. Thus, the begin of the search is completely
chaotic, and arbitrary, since from the point of view of the SAT solving engine any as-
signment will satisfy the apparently easy and underconstrained formula. We say the

12

SAT engine starts an almostblind search, where the successful search heuristics devel-
oped by the SAT community are hardly useful. Our hypothesis is corroborated by the
Math-SAT and SAL suites, where several boolean variables are used to encode the con-
trol flow and finite domains. In this case, although the SAT engine does not know the
hidden relationships between the freshly added boolean variables, it is guided by the
control flow exposed by the boolean variables. This hypothesis also helps explaining
why SVC performs better than ICS and CVC on the UCLID suite, simply because SVC
uses specialized heuristics based on the structure of the formula.

Memory Usage.Math-SAT and Simplify are the systems using the least amount of
memory. In contrast, CVC often aborts by running out of memory instead of running
up its time limits. A similar phenomenon can be observed with ICS. We have traced
this deficiency back to imprecise generation of explanations for pruning Boolean as-
signments. For instance, union-find structures are commonly to represent conjunctions
of equalities, but a naive logging mechanism of dependencies might already produce
extraneousexplanations[22]. Better tradeoffs between the accuracy of the generated
explanations and the cost for computing them are needed. Another problem in systems
such as ICS and CVC is the maintenance of information to perform backtracking. Math-
SAT is a non-backtrackable system, so it does not suffer from this problem, at the cost
of having to restart from scratch every time an inconsistency is detected.

Loss of Structural Information.When developing the translators for these experi-
ments, we noticed that the performance of most solvers heavily depends on the way
problems are encoded. For instance, the repetitive application of the transformation
F[t] =⇒ F[x] ∧ x = t with t a term occurring inF, andx a fresh variable, transforms
many easy problems into very hard problems for UCLID, CVC and CVC Lite.

6 Conclusions

Our performance study demonstrates that recently developed translation-based GDPs—
eager or lazy—well advance the state-of-the-art. However, this study also exposes some
specific weaknesses for each of the GDP tools under consideration. Handling of arith-
metic needs to be improved for eager systems, whereas lazy systems can be consid-
erably improved by a tighter integration of constraint propagation, specialized search
heuristics, and the generation of more precise explanations. A main impediment for
future improvements in the field of GDPs, however, is not necessarily a lack of new
algorithms in the field, but rather the limited availability of meaningful benchmarks.
Ideally, these benchmarks are distributed in a form close to the problem description
(e.g. not necessarily in clausal normal form). A collaborative effort across the field of
GDPs is needed here [23].

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
in Computers8 (1986) 677–691

13

2. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7 (1960) 201–215

3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Tech-
nical Report HPL-2003-148, HP Labs (2003)

4. Stump, A., Barrett, C.W., Dill, D.L.: CVC: a cooperating validity checker. In: Proc. of
CAV’02. Volume 2404 of LNCS. (2002)

5. Filliâtre, J.C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonization and Solving.
In: Proc. of CAV’01. Volume 2102 of LNCS. (2001)

6. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In: Proc. of
CAV’02. Volume 2404 of LNCS. (2002)

7. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based ap-
proach for solving formulas over boolean and linear mathematical propositions. In: Proc. of
CADE’02. (2002)

8. Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with equality.
LNCS1166(1996) 187–201

9. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions problem.
Journal of the ACM27 (1980) 758–771

10. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans-
actions on Programming Languages and Systems1 (1979) 245–257

11. Shostak, R.E.: Deciding combinations of theories. Journal of the ACM31 (1984) 1–12
12. Shankar, N., Rueß, H.: Combining Shostak theories. In: Proc. of RTA’02. Volume 2378 of

LNCS. (2002)
13. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over

infinite domains. In: Proc. of CADE’02. Volume 2392 of LNCS. (2002)
14. Ackermann, W.: Solvable cases of the decision problem. Studies in Logic and the Foundation

of Mathematics (1954)
15. Shostak, R.E.: Deciding linear inequalities by computing loop residues. Journal of the ACM

28 (1981) 769–779
16. Goel, A., Sajid, K., Zhou, H., Aziz, A.: BDD based procedures for a theory of equality with

uninterpreted functions. LNCS1427(1998) 244–255
17. Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: Deciding equality formulas by small

domains instantiations. LNCS1633(1999) 455–469
18. Bryant, R.E., German, S., Velev, M.N.: Exploiting positive equality in a logic of equality

with uninterpreted functions. LNCS1633(1999) 470–482
19. Strichman, O., Seshia, S.A., Bryant, R.E.: Reducing linear inequalities to propositional for-

mulas. In: Proc. of CAV’02. Volume 2404 of LNCS. (2002)
20. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incre-

mental translation to SAT. In: Proc. of CAV’02. Volume 2404 of LNCS. (2002)
21. Joshi, R., Ou, X., Saxe, J.B., Flanagan, C.: Theorem proving using lazy proof explication.

In: Proc. of CAV’03. Volume 2725 of LNCS. (2003)
22. de Moura, L., Rueß, H., Shankar, N.: Justifying Equality. Submitted for publication,http:
//www.csl.sri.com/users/ruess/papers/PDPAR04/index.html (2004)

23. Ranise, S., Tinelli, C.: The smt-lib format: An initial proposal. In: Proceedings of the
1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning
(PDPAR’03), Miami, Florida. (2003) 94–111

http://www.csl.sri.com/users/ruess/papers/PDPAR04/index.html
http://www.csl.sri.com/users/ruess/papers/PDPAR04/index.html

